Adult wild type male C57BL/6 mice were i v administered PBS, bon

Adult wild type male C57BL/6 mice were i.v. administered PBS, bone marrow stromal cells 5 x 10(5), DETA-NONOate 0.4 mg/kg selleck products or combination DETA-NONOate with bone marrow stromal cells (n=12/group) after middle cerebral artery occlusion. Combination

treatment significantly upregulated angiopoietin-1/Tie2 and tight junction protein (occludin) expression, and increased the number, diameter and perimeter of blood vessels in the ischemic brain compared with vehicle control (mean +/- S.E., P<0.05). In vitro, DETA-NONOate significantly increased angiopoietin-1/Tie2 protein (n=6/group) and Tie2 mRNA (n=3/group) expression in bone marrow stromal cells. DETA-NONOate also significantly increased angiopoietin-1 protein (n=6/group) and mRNA (n=3/group) expression in mouse brain endothelial cells (P<0.05). Angiopoietin-1 mRNA (n=3/group) was significantly increased in mouse brain endothelial cells treated with DETA-NONOate in combination with bone marrow stromal cell-conditioned medium compared with cells treated

with bone marrow stromal cell-conditioned medium or DETA-NONOate alone. Mouse brain endothelial cell capillary tube-like formation assays (n=6/group) showed that angiopoietin-1 peptide, the supernatant of bone marrow stromal cells CDK inhibitor and DETA-NONOate significantly increased capillary tube formation compared with vehicle control. Combination treatment significantly increased capillary tube formation compared with DETA-NONOate treatment alone.

Inhibition of angiopoietin-1 significantly attenuated combination treatment-induced find more tube formation. Our data indicated that combination treatment of stroke with DETA-NONOate and bone marrow stromal cells promotes neovascularization, which is at least partially mediated by upregulation of the angiopoietin-1/Tie2 axis. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Receptor specificity determines the role of vascular endothelial growth factors (VEGFs), which either induce angiogenesis via VEGFR-1 and VEGFR-2 receptors or lymphangiogenesis via the VEGFR-3 receptor. Among the VEGFs, VEGF-A and VEGF-B predominantly induce angiogenesis while VEGF-C and VEGF-D induce lymphangiogenesis. The answer for the question of why VEGF-C and VEGF-D are not able to bind VEGFR-1 and behave as angiogenic growth factors may hide behind the details of the tertiary structures of these proteins. In the present study, the tertiary structure of human VEGF-C protein was modelled and the model was compared with the known human VEGF-A tertiary structure. In overall, the modelled structure highly resembled the structure of VEGF-A. The respective key residues that are involved in cysteine-knot motif formation in VEGF-A are similarly located and identically oriented in VEGF-C, indicating the presence of a VEGF-A-like homodimer.

Comments are closed.