Microbiology and Molecular Biology

Microbiology and Molecular Biology Tipifarnib in vivo Reviews, 64:548–572. Rontó, G., Bérces A., Fekete, A., Kovács, G., Gróf, P., and Lammer, H. (2004). Biological UV

dosimeters in simulated space conditions. Advances in Space Research, 33: 1302–1305. Schuch, A. P., Guarnieri, R. A., Rosa, M. B., Pinheiro, D. K., Munakata, N., and Schuch, N. J. (2006). Comparisons of biologically effective doses of solar UV-radiation determined with spore dosimetry and spectral photometry in 2000–2003 at Southern Space Observatory, Brazil. Advances in Space Research, 37: 1784–1788. E-mail: pabulo@lacesm.​ufsm.​br First Results from Mars Simulator LISA R. Visentin1,2, G. Bertoloni2, M. D’Alessandro3, G. Galletta1 1Dipartimento di Astronomia, Università di Padova, Italy; 2Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche, Università di Padova, Italy; 3INAF-Osservatorio Astronomico di Padova, Italy We present the first results obtained from experiments performed with the Martian simulator LISA (Laboratorio Italiano Simulazione Ambienti, Galletta et al., 2006, 2007). The research was carried

out at the University and Astronomical Observatory of Padua, Italy. LISA environmental chamber has been designed to simulate the conditions on the surface of planet Mars (atmospheric pressure, 6–9 Mb; temperature ranging from 133 to 293 K, atmospheric composition, 95% of carbon dioxide; strong UV radiation). We have studied the survival of the microorganisms exposed to the above described conditions. The microorganisms used in our experiments are bacterial 17-AAG solubility dmso strains belonging to the

genus Deinococcus, and to the endospore forming genera Bacillus and Clostridium (D’Angelo, 2007). Cellular suspensions or endospores suspensions were layered on sterile coverslip dehydrated under sterile air flux, introduced in dedicated plates and then exposed to the Martian condition inside the LISA chamber. One of our Bacillus strains has shown Megestrol Acetate a particular capability to survive in Martian conditions without screening by dust or other shields, in fact we Selleckchem PF-6463922 noticed a capability to survive (as endospores suspension) at least 4 h and in some cases to 28 h of Martian conditions, in the longest experiment we performed until now. We discuss the features of the experiments, our first results and the future tests to investigate the survival of lifeforms under Martian conditions. D’Angelo, G., (2007). Sopravvivenza di cellule e spore batteriche esposte a condizioni ambientali estreme. BSc Thesis, Dipartimento di Scienze Matematiche, Fisiche e Naturali, Università degli Studi di Padova. Galletta, G., Ferri, F., Fanti, G., D’Alessandro, M., Bertoloni, G., Pavarin, D., Bettanini, C., Cozza, P., Pretto, P., Bianchini, G., and Debei, S. (2006). S.A.M., the Italian Martian simulation chamber. Origins of life and evolution of the biosphere, 36: 625–627. Galletta, G., D’Alessandro, M., Bertoloni, G., Fanti, G., Danese, E., Pelizzo, M., Ferri, F., Pavarin, D., Bettanini, C., Bianchini, G., Debei, S. (2007).

Heat inactivation of any of the serums led to the partial decreas

Heat inactivation of any of the serums led to the partial decrease of the expression of both of the tested defensins by cells exposed either to A. fumigatus conidia, HF, or to Il-1β (Figure 2C, D). Kinetics of defensin expression by cells exposed selleck chemical to A. fumigatus organisms To analyse the kinetics of defensin expression, cells were exposed to A. fumigatus for 4, 8 and 18 hours, and the expression of hBD2 and hBD9 was examined. As a positive control, Il-1β-treated cells were examined. As a negative control, untreated cells or cells exposed to 5 × 106 latex beads were analysed as well. According to the results presented on Figure 3, the expression of both defensins, hBD2 and hBD9, were

induced in the 16HBE cells treated with Il-1β either

for 4, 8 or 18 hours. No hBD2 expression was detected after a 4-h exposure by 16HBE to SC, RC or HF of A. fumigatus, in contrast to hBD9 expression by cells exposed to all morphotypes of A. fumigatus for the same period. Incubation of the cells with both types of conidia or HF for 8 h see more resulted in a low level of hBD2 expression and a high level of hBD9 expression, comparable to expression by the cells treated with the positive control, Il-1β. Exposure of the cells to conidia or HF for 18 h led to the high expression of both defensins, hBD2 and hBD9. Exposure of the cells to the latex beads did not induce the defensin expression in any of the experiments. The constitutive expression of hBD1 by the cells exposed either to the different morphotypes of A. fumigatus or to the latex beads for the various periods was observed in the current experiment. Figure 3 Kinetics of defensin mRNA expression by 16HBE human epithelial

bronchial cells exposed to A. fumigatus organisms. 16HBE human epithelial tracheal cells (5 × 106) were grown in six well plates for 24 hours. The cells were then exposed to the different morphotypes of A. fumigatus or latex beads for the different periods: 4 h, 8 h and 18 h. After incubation, the cells were washed Urocanase with PBS, mRNA was isolated by TRIzol Reagent, and RT-PCR was performed as described above in CT99021 molecular weight Materials and Methods. Specific primer pairs and the conditions of RT-PCR are described in Table 1. The sizes of amplified products are indicated and were as predicted: hBD2, 199-bp product; hBD9, 174 bp product and human GAPDH, 473-bp product. The hBD2 and hBD9 products were sequenced and confirmed to be identical to the predicted sequence. Cells were cultivated in a control well in the absence of A. fumigatus. GAPDH was uniformly expressed. One of the four results is shown. Similar kinetics of hBD2 and hBD9 expression was observed with A549 cells (data not shown). Real time PCR The relative level of hBD2 and hBD9 expression in 16HBE and A549 cells exposed to different A. fumigatus morphotypes for 18 hours was quantified by real time PCR.

Nishino K, Hsu FF, Turk J, Cromie MJ, Wosten MM, Groisman EA: Ide

Nishino K, Hsu FF, Turk J, Cromie MJ, Wosten MM, Groisman EA: Identification of the lipopolysaccharide AZ 628 clinical trial modifications controlled by the Salmonella PmrA/PmrB

system SBI-0206965 concentration mediating resistance to Fe(III) and Al(III). Mol Microbiol 2006,61(3):645–654.PubMedCrossRef 29. Maloy SR, Stewart VJ, Taylor RK: Genetic analysis of pathogenic bacteria: A laboratory manual. Plainview, NY: Cold Spring Harbor Laboratory Press; 1996. 30. Horsman SR, Moore RA, Lewenza S: Calcium chelation by alginate activates the type III secretion system in mucoid Pseudomonas aeruginosa biofilms. PLoS One 2012,7(10):e46826.PubMedCrossRef 31. Bjarnason J, Southward CM, Surette MG: Genomic profiling of iron-responsive genes in Salmonella enterica serovar typhimurium by high-throughput screening of a random promoter library. J Bacteriol 2003,185(16):4973–4982.PubMedCrossRef”
“Background Aerobic anoxygenic photoheterotrophic bacteria are found selleck in large

numbers in upper ocean waters and marine sediments [1–3]. Populations of this functional group in marine ecosystems are dominated by representatives belonging to the Roseobacter clade within the class Alphaproteobacteria and the OM60/NOR5 clade within the Gammaproteobacteria[4, 5]. Due to their high abundance in oceans, aerobic anoxygenic photoheterotrophs can play a significant role in the marine carbon cycle. It was estimated that up to 5.7% of the total phototrophic energy flow in open ocean waters could rely on bacteriochlorophyll a (BChl a)-based photophosphorylation [6, 7]. The prevalence of aerobic anoxygenic photoheterotrophy in marine ecosystems is probably based on two reasons: First, the utilization

of light for mixotrophic growth enhances oxyclozanide biomass formation under conditions of carbon limitation and gives aerobic anoxygenic photoheterotrophs a selective advantage against obligate chemoheterotrophic bacteria. Secondly, utilization of solar energy by aerobic anoxygenic photoheterotrophs is largely independent from photoinhibition, which is caused by high light-intensities in surface waters and reduces the chlorophyll a-based photosynthetic activity of oxygenic photoautotrophs [6]. In order to verify both assumptions, it is of interest to elucidate which factors control the expression of the photosynthetic apparatus in cells of aerobic anoxygenic photoheterotrophs and how the energy yield generated by light-harvesting correlates with the environmental conditions. The regulation of pigment production and light-dependent growth in members of the Alphaproteobacteria has been analysed previously in numerous studies [8–13]. In most of these studies exposure to light was identified as major factor that negatively controls the expression level of photosynthetic pigments.

65) and was higher in plantations in three out of the five cases

65) and was higher in plantations in three out of the five cases reported (Fig. 3). In one case exotic species richness was unaffected by Poziotinib mouse plantation establishment; in the one case where exotic species richness was higher in the primary forest than plantation, the abundance of exotic species was lower in the primary forest (Goldman et al. 2008). Moreover, in this case, native species richness and overall species richness decreased with plantation establishment,

indicating a much more abundant and diverse native understory in primary forests compared to plantations. In contrast, species richness significantly increased in the secondary forest to plantation category (P < 0.05; Table 1; Fig. 2), despite considerable heterogeneity among results, with plantations being less species rich MLN4924 molecular weight than secondary forests in 18 of the 54 cases. Non-native species richness was reported in two cases in the secondary forest to plantation category p38 MAPK inhibitor review (Fig. 3). One was a group of plantations that used native species where exotic species richness increased by approximately 5% (data estimated from figure) (Battles et al. 2001). The other was an exotic species plantation, which reported one non-native species in the plantation compared to none in the paired secondary forest (a 100% increase) while native species richness declined 17% (the one case reporting

native species richness in the secondary forest to plantation category) with plantation establishment (Cremene et al. 2005). Narrow/endemic/specialist species richness increased 12% (±27%) overall, but was highly variable

and swayed by one case where narrow/endemic/specialist species richness increased by 144% (Cremene et al. 2005), whereas, four out of six cases resulted in a decrease in narrow/endemic/specialist species. Exotic or degraded pasture to plantation Species richness in plantations established on exotic or degraded pasture increased in 13 of 22 cases, but Selleck Depsipeptide the mean increase of 25% (±15%) was not significant (P = 0.83) (Fig. 2; Table 1). Exotic species richness significantly decreased by 39% (P < 0.05; n = 6), while native species richness increased by 410% (P = 0.11; Fig. 3). Species richness in plantations utilizing native species increased an average of 45% (n = 14) while in plantations utilizing non-native species, species richness decreased overall by 12% (n = 8), although neither of these was significant. It should be noted that several publications finding large increases in woody species richness in both exotic and native plantations established on degraded or exotic pastures (Parrotta 1995; Cusack and Montagnini 2004) were excluded because they did not include herbaceous species richness, but do indicate the high capacity of plantations to restore woody diversity, which is sometimes the goal of plantation establishment (both native and exotic) on degraded lands. Effects of plantation species We found a highly significant (P < 0.

Figure 7 TEM micrographs of silica nanoparticles obtained at diff

Figure 7 TEM micrographs of silica nanoparticles obtained at different aging times. 3 (a), 5 (b), 6 (c), 7 (d), 8 (e), and 12 h (f). The Fourier transform infrared (FT-IR) spectra of the silica nanoparticles dried at 100°C are shown in Figure 8. The peaks at 1,103, 804, and 488 cm−1 are due to the asymmetric, symmetric, and bending modes of SiO2, respectively. The broad absorption band at 3,402 cm−1 and the peak at 1,466 cm−1 for the sample are due to the -OH groups. The absorption bands observed at 2,924 and 2,853 cm−1 are due to the bending of -CH2 and -CH3 of the CTAB surfactant. EPZ004777 molecular weight The FT-IR spectra show C-H peaks at 2,924 and 2,853

cm−1, clearly indicating the organic modification of the nanoparticle surface and the silica nanoparticle obtained

GSK1838705A in amorphous state. Figure 8 FT-IR spectra of the nanoparticles. In addition, the characteristic peak corresponding to the silica crystalline structure was not clearly observed at 2θ = 22° in the XRD diagrams of Figure 9, indicating that the samples are nearly amorphous. Figure 9 XRD diagram of silica nanoparticle. Conclusions RHA material was successfully synthesized from the abundant Vietnamese rice husk. A new synthetic method for spherical silica nanoparticles using RHA as the silica source and CTAB as the surfactant via the sol–gel technique in water/butanol was investigated. This method is a simple and effective route for preparing ultrafine powders on a nanometer scale and with a homogeneous particle size distribution. The specific surface area is reached at 340 m2/g, and the silica product obtained MycoClean Mycoplasma Removal Kit is amorphous. This leads to the low-cost production of silica nanoparticles for various practical applications such as pollution treatment, nanocomposite materials, etc. Furthermore, using this source for the production of RHA provides a way to solve the waste problem of rice husk pollution in the Mekong Delta of Vietnam. Authors’ information VHL graduated

and received his Bachelor of Science in Organical Chemistry in 2005, and after that, he received his M.S. in Physical Chemistry in 2011 from the University of Science, HoChiMinh City, Vietnam. His research interests selleck include nanomaterials and polymers. CNHT is currently the Vice Dean of the Faculty of Materials Science, University of Science-National University of HoChiMinh City, Vietnam. He graduated with the degree B.S. in Physical Chemistry from the University of Science, HoChiMinh City, Vietnam, in 2004. He received his M.S. in Physico-chemistry of Materials from the University of Maine, Le Mans, France, in 2005 and received his Ph.D. in Materials Science and Engineering from the University of Savoie, Chambéry, France, in 2008. His research interests include polymers, nanocomposites based on polymers, and biodegradable polymers. HHT is an associate professor in the Faculty of Chemistry, University of Science, Vietnam National University in HoChiMinh City, Vietnam.

Biosens and Bioelectron 2005, 21:827 CrossRef 7 Luo XL, Xu JJ, Z

Biosens and Bioelectron 2005, 21:827.CrossRef 7. Luo XL, Xu JJ, Zhao W, Chen HY: A novel glucose ENFET based on the special reactivity of MnO 2 nanoparticles. Biosens and Bioelectron 2004, 19:1295.CrossRef 8. Wang F, Hu S: Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 2009, 165:1.CrossRef 9. Cao X, Ye Y, Liu S: Gold nanoparticle-based signal amplification for

biosensing. Anal Biochem 2011, 417:1.CrossRef 10. Gun J, Rizkov D, Lev O, Abouzar MH, Poghossian A, Schoning MJ: Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchim Acta 2009, 164:395.CrossRef 11. Wang GL, Xu JJ, Chen HY: Selective detection of trace amount of Cu 2+ using semiconductor nanoparticles in photoelectrochemical Ion Channel Ligand Library screening analysis. Nanoscale 2010, 2:1112.CrossRef 12. Freeman R, Willner I: Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 2012, 41:4067.CrossRef 13. Talapin DV, Lee JS, Kovalenko MV, Shevchenko EV: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 2010, 110:389.CrossRef 14. Medintz IL, Uyeda HT, Goldman ER, Matoussi H: Quantum dot bioconjugates for imaging,

labelling and sensing. Nat selleck inhibitor Mater 2005, 4:435.CrossRef 15. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kaohi M, Akbarzadeh A, Davarav S: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012, 7:480.CrossRef 16. Dennis AM, Rhee WJ, Sotto S, Dublin SN, Bao G: Quantum dot fluorescent protein C-X-C chemokine receptor type 7 (CXCR-7) FRET probes for sensing intracellular pH. ACS Nano 2012, 6:2917.CrossRef 17. Pechstedt K, Whittle T, Baumberg J, Melvin T: Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water molecules. J Phys Chem C 2010, 114:12069.CrossRef 18. Cordero SR, Carson PJ, Estabrook RA,

Strouse G, Buratto SK: Photo-activated luminescence of CdSe quantum dot monolayers. J Phys Chem B 2000, 104:12137.CrossRef 19. Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Bruss LE: Fluorescence intermittency in single CdSe nanocrystals. Nature 1996, 383:802.CrossRef 20. Antipov A, Bell M, Yasar M, Mitin V, Scharmach W, Swihart M, Verevkin A, Sargeev A: Luminescence of colloidal CdSe/ZnS nanoparticles: high sensitivity to solvent phase transitions. Nanoscale Res Lett 2011, 6:142.CrossRef 21. Lee SK, Mao C, Flynn CE, Belcher AM: Ordering of quantum dots using genetically engineered viruses. Science 2002, 296:892.CrossRef 22. Mcmillan RA, Howard J, Zaluzec NJ, Kagawa HK, Mogul R, Li YF, Paavola CD, Trent JD: A self-assembling protein template for constrained this website synthesis and patterning of nanoparticle arrays. J Am Chem Soc 2005, 127:2800.CrossRef 23. Mcmillan RA, Paavola CA, Howard J, Chan SL, Zaluzec NJ, Trent JD: Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nat Mater 2002, 1:247.CrossRef 24.

Effect of revised assumptions for US-FRAX The results of these re

Effect of revised assumptions for US-FRAX The results of these revisions

are summarized in Table 6, which compares the current rates used in US-FRAX (based on the sum of the four individual fracture types from Olmsted County) to the newly derived four-fracture rates based on the steps described above. The revised base annual four-fracture rates are lower, and this Adriamycin should result in lower US-FRAX 10-year four-fracture probability estimates. Indeed, an average one-third reduction in four-fracture risk can be expected in both women and men of all ages. Table 6 Comparison of ratios of 10-year 4 fracture probability PU-H71 supplier to 10-year hip fracture probability alone obtained from current FRAX® (available on web site, January 2009) Country Age, years 50 55 60 65 70 75 80 Estimates from FRAX®a (10-year risk) US currentb 16 13 11 11 6.2 4.2 3.5 Sweden 11 9.0 6.3 4.8 3.3 2.4 2.1 UK 18 12 8.6 6.6 4.8 3.1 2.4 Italy 16 9.0 6.7 5.1 3.3 2.4 2.1 France 12 9.3 6.6 5.1 3.5 2.5 2.3 Spain 14 10 6.0 4.6 3.5 VX-680 ic50 2.5 2.3 Based on proposed revision to

US incidence rates (annual) US revised 14 12 10 5.9 4.4 2.4 1.9 The table also compares the current US ratios with estimates of ratios that might be expected based on revised annual US incidence rates aFrom FRAX® tables for white women, without BMD, BMI = 25, and no risk factors bCalculated from the October 2008 version of US FRAX, for white women, without BMD, BMI = 25, and no risk factors This revision of the US-FRAX incidence rates should also mean that the absolute likelihood of four fractures for US non-Hispanic white women will be closer to the percentages obtained using FRAX® for European countries. This was evaluated by comparing the four-fracture/hip

fracture ratios (for 10-year probability) from these countries to the ratio of annual risk of these categories of fractures in the proposed revision. Thus, Table 6 also shows the 10-year four-fracture/hip fracture ratio for different ages calculated from FRAX® online tables for a woman with body mass index (BMI) of 25, without clinical risk factors, and with no BMD value. The ratios across Europe are quite similar, while the US ratios based on check the October 2008 US-FRAX tool are considerably higher. Judging from our revised annual four-fracture and hip fracture incidence rates, it is likely that the revised US-FRAX will provide results more consistent with those of other countries. Discussion Since FRAX® was adapted for application in the USA some years ago, newer and more robust fracture incidence and mortality rates have become available. In particular, we feel it highly advantageous to use recent hip fracture incidence rates, which have the further advantage of being based on more robust national data.

The partially enlarged image in Figure  2b reveals that the CdS M

The partially enlarged image in Figure  2b reveals that the CdS MPs were coated by graphene sheet clearly. Further evidence for the attachment of CdS MPs

onto the graphene is provided by TEM. Figure  2c shows a typical graphene nanosheet decorated by CdS MPs. It can be clearly observed that graphene nanosheets are hybridized with CdS MPs which are anchored on the graphene uniformly. Except for the CdS MPs decorating the graphene nanosheet, no other particles can be observed, which indicates the good combination of graphene and CdS MPs. The measurement of the size distribution shows that the CdS MPs in the hybrid have a relatively average diameter around 640 nm. For comparison, the TEM image of pure CdS MPs is shown in Figure  2d, which gives similar size distribution with that of CdS MPs in the hybrid. Figure 2 SEM and TEM images of G/M-CdS composites and pure CdS MPs. Typical SEM images of as-prepared G/M-CdS composites (a, b) and TEM images BIBW2992 ic50 of G/M-CdS (c) and pure CdS MPs (d). The adsorption of Rh.B was enhanced gradually before 150 min in the dark, when the BMS202 order adsorption-desorption equilibrium was reached. Figure  3 shows the adsorption capacity of Rh.B onto G/M-CdS composites and

pure CdS MPs with different loading amount recorded at 150 min. The removal ratio of Rh.B increases with the increasing loading amount of G/M-CdS. The removal ratio of the dye is increased from 49.1% to 84.5% when the loading amount increases from 4 to 36 mg, which is higher than that of pure CdS MPs. The higher extraction efficiency of G/M-CdS could be attributed Resminostat to the large surface area and high adsorption ability of the graphene. The mechanism of the G/CdS adsorption toward the organic dye may be derived from two reasons. One reason might be based

on van der Waals interactions occurring between the hexagonally arrayed carbon atoms in the graphite sheet of G/CdS and the aromatic backbones of the dye. The second reason might be due to the strong π-stacking interaction between the benzene ring of the dye and the large delocalized π-electron system of the G [37]. It can be seen that the removal ratio gets to saturation when the loading amount of G/M-CdS is more than 20 mg. Figure 3 Adsorption capacity of Rh.B onto G/M-CdS composites and pure CdS MPs with different loading amount. The photocatalytic performance of the G/M-CdS composites in terms of photodegradation of Rh.B molecules under visible-light BAY 11-7082 manufacturer irradiation was investigated. Figure  4 describes the removed Rh.B amount as a function of irradiation time. The loading amounts of G/M-CdS and CdS MPs are both 20 mg. When using G/M-CdS photocatalysts, the photodegradation rates of Rh.B had reached 69.5% after irradiating for 120 min. After the illumination time was extended to 270 min, 96.6% of Rh.B was decomposed. For pure CdS MPs, the photodegradation rate of Rh.B was 83.8% after 270 min visible light irradiation.

49 Gauglianone P, Chan K, DelaFfor-Weiss E, Hanixh R, Jeffers S,

49. Gauglianone P, Chan K, DelaFfor-Weiss E, Hanixh R, Jeffers S, Sharma D, Muggia F: Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 1994, 12:103–110.CrossRef click here 50. Eckardt JR, Campbell E, Burris HA, Weiss CR, Rodriguez CI, Fields SM, Thurman AM, Peacock NW, Cobb P, Rothenbeig ML: A phase II trial of DaunoXome, liposome-encapsulated daunorubicin,

in patients with metastatic adenocarcinoma of the colon. Am Clin Oncol 1994, 17:498–501.CrossRef 51. Schurmann D, Dormann A, Grunewald T, Ruf B: Successful treatment of AIDS-related pulmonary Kaposi’s sarcoma with liposomal daunorubicin. Eur Respir J 1994, 7:824–825.CrossRef 52. New RRC, Chance SM, Thomas SC, Peters W: Nature antileishmanial activity of antimonials entrapped KPT-8602 in liposomes. Nature 1978, 272:55–58.CrossRef 53. Lopez-Berestein G, Fainstein V, Hopter R, Mehta KR, Sullivan M, Keating M, Luna M, Hersh EM: Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer. J Infect Diseases 1985, 151:704–710.CrossRef 54. Lasic DD: Mixed micelles in drug delivery. Nature 1992, 355:279–280.CrossRef 55. Svenson CE, Popescu MC, Ginsberg RC: Liposome treatments of viral, bact and protozoal infections. Crit Rev Microbiol 1988, 15:S1-S31.CrossRef 56. Gabizon A: Liposomes as a drug delivery system in cancer therapy.

In Drug Carrier Systems. Edited by: Roerdink FHD, Kron AM. Chichester: Wiley; 1989:185–211. 57. Storm G, Roerdink FH, Steerenberg PA, de Jong WH, Crommelin DJA: Influence of lipid composition on the antitumor activity exerted by doxorubicin containing liposomes in a rat solid tumor model. Cancer Res 1987, 47:3366–3372. 58. Akbarzadeh A, Asgari D, Zarghami N, Mohammad R, Davaran S: Preparation and in

vitro evaluation of doxorubicin-loaded Fe 3 O 4 INK1197 price magnetic nanoparticles modified with biocompatible co-polymers. Int J Nanomedicine 2012, 7:511–526. 59. Akbarzadeh A, Zarghami N, Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Tryptophan synthase Samiei M, Davaran S: Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin. Nanotechnol Sci Appl 2012, 5:13–25. 60. Akbarzadeh A, Samiei M, Davaran S: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012, 7:144.CrossRef 61. Valizadeh A, Mikaeili H, Samiei M, Mussa Farkhani S, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S: Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012, 7:480.CrossRef 62. Akbarzadeh A, Samiei M, Joo SW, Anzaby M, Hanifehpour Y, Nasrabadi HT, Davaran S: Synthesis, characterization and in vitro studies of doxorubicin-loaded magnetic nanoparticles grafted to smart copolymers on A549 lung cancer cell line. J Nanobiotechnology 2012, 10:46.CrossRef Competing interests The authors declare that they have no competing interests.

Presently, attenuated pathogens such as Salmonella, Shigella, Lis

Presently, attenuated pathogens such as Salmonella, Shigella, Listeria, Yersinia, check details as well as, non-pathogenic Escherichia coli have been used as experimental live delivery systems [17, 18]. An advantage of using attenuated pathogens as DNA vaccine vehicles is that they possess mechanisms to adhere or invade host cells with a negligible risk of reversion to a virulent strain via gene transfer or mutation. However, a potential concern is the risk of increased virulence in young or CUDC-907 supplier immunocompromised individuals. The use of food-grade lactic acid bacteria

(LAB) as DNA delivery vehicle represents an alternative and attractive strategy to deliver DNA vaccines at the mucosal surfaces see more (ref review by 19 and 20). The dietary group of LAB, including Lactococcus lactis

and many species of Lactobacillus, is generally regarded as safe (GRAS) organisms of which some are intestinal commensals of humans. Indeed, it has been extensively demonstrated that these bacteria are able to deliver a range of vaccine and therapeutic molecules for applications in allergic, infectious or gastrointestinal diseases [19, 21, 22]. A relatively new development, however, is their use as a vehicle for genetic immunization [23]. Previous experiments performed by our group showed that either native L. lactis (LL) or recombinant invasive LL expressing Fibronectin Binding Protein A (LL-FnBPA+) of Staphylococcus aureus or Internalin A (InlA) of Listeria monocytogenes (LL-InlA+) [24, 25], were able to deliver DNA in epithelial cells both in vitro and in vivo, demonstrating potential as gene transfer Pregnenolone vehicles [24–27]. However InlA does not bind to its murine receptor, E-cadherin, thus limiting the use of LL-InlA+ in in vivo murine model. On the other hand, FnBPA requires an adequate local concentration of fibronectin to bind to its receptors, integrins [28, 29]. In order to avoid the limitations of InlA and FnBPA and improve our knowledge on the key steps

by which the DNA is transferred to mammalian cells using L. lactis, LL was engineered to express a mutated form of Internalin A (mInlA; Ser192Asn and Tyr369Ser) that increased binding affinity to murine and human E-cadherin [30, 31] thus allowing for in vivo experiments in conventional mice. Herein, we describe the construction and characterization of this novel L. lactis strain as a DNA delivery vector, using cow’s milk β-lactoglobulin (BLG) allergen, to measure DNA transfer to intestinal epithelial cells (IECs) in vitro and in vivo. Overall, the production of mInLA+at the surface of Lactococcus lactis increased the invasisity of bacterium and amount of plasmid transfer by 1000 and 10 fold, respectively.