The identity of the bands has been confirmed previously [5] The

The identity of the bands has been confirmed previously [5]. The glycolipids marked with an asterisk have not been analyzed. Figure 3 Role of bgsB in biofilm formation and bacterial adherence to Caco-2 cells. A Biofilm formation on polystyrene. Microtiter plates were incubated with bacteria for 18 h, non-adherent bacteria removed by washing with PBS, and biofilms stained with crystal violet. Data represent the means ± SEM. *** P < Tukey's multiple

comparison test. B Development of biofilm on polystyrene of E. faecalis 12030 wt, 12030ΔbgsB, and 12030ΔbgsA over time. After incubation periods of ≥ 4 h, E. faecalis 12030 wt elaborated significantly more biofilm than the deletion mutants (P < 0.001, Tukey's multiple comparison test). Bars represent AC220 mouse means ± SEM. C Bacterial adherence to Caco-2 cells. Caco-2 cells were incubated at a multiple of infection of 100:1 for 2 h with the respective strain grown to mid-log

www.selleckchem.com/products/prt062607-p505-15-hcl.html phase. Data represent the means ± SEM. *** P < 0.001, Dunn's multiple comparison test. Deletion of bgsB leads to a complete loss of glycolipids from the cell membrane and to expression of LTA with increased chain length We hypothesized that, because it is located immediately downstream from bgsA and has high homology to ALmgs in Acholeplasma laidlawii, the gene product of bgsB glycosylates diacylglycerol to yield MGlcDAG. To test this hypothesis, we extracted the total lipids of the cell membrane, separated them by thin layer chromatography (TLC), and stained glycolipids with α-naphthol (Figure 2). As shown previously, inactivation of bgsA resulted in accumulation of Vitamin B12 MGlcDAG in the cell membrane (Figure 2). In contrast, no glycolipids were visualized in 12030ΔbgsB extracts, suggesting that bgsB encodes for a glycosyltransferase that glycosylates DAG to form MGlcDAG. MGlcDAG is the substrate of BgsA, which adds a second glucose to yield DGlcDAG (Figure 1). Since BgsA does not accept DAG as a substrate, inactivation of BgsB results in the loss of all glycolipids from the cell membrane (Figure 2). We recently showed

that inactivation of bgsA also affects LTA synthesis, increasing the chain length of the glycerol-phosphate polymer [5]. Inactivation of bgsB has a similar effect on the LTA chain length (Figure 4). To estimate the chain length of the glycerol-phosphate chain by 1H-NMR analysis, we used the fatty acid signals of the molecule as an internal MG-132 reference and compared the integration values of H1 of glucose and -CH3 of alanine to the -CH3 and -CH2- signals (δ 1.26-1.29, and 0.88) of the fatty acids [5]. The integral ratios yielded higher amounts of glucose and alanine incorporated into the LTA of 12030ΔbgsB and 12030ΔbgsA compared to the wild type, suggesting an increased length of the glycerol-phosphate polymer (Figure 4). These results are supported by quantification of LTA from butanol extracts by ELISA (Figure 5).

Extracts of Magnolia officinalis bark and its active constituent,

Extracts of Magnolia officinalis bark and its active constituent, honokiol, have been studied in animal models with comparable anxiolytic activity to diazepam (a benzodiazepine anxiolytic used to treat anxiety), but without associated side effects such as sedation [10–13]. Berberine, a constituent of the selleck kinase inhibitor Phellodendron extract, has also demonstrated a significant anxiolytic effect in rodent stress studies, including the elevated plus maze test and the forced swim test [14, 15]. The combination of magnolia plus phellodendron appears to be even more effective in controlling stress/anxiety compared GNS-1480 nmr to either herb used separately [16–19]. The subject of this study, Relora® (Next

Pharmaceuticals, Inc, Salinas, CA), is a proprietary dietary supplement formulation consisting of a blend of extracts of Magnolia officinalis bark and Phellodendron amurense bark standardized to honokiol and berberine, respectively. In previous studies, Relora has demonstrated efficacy for reducing stress and anxiety in animals [18, 19] and enhancing feelings of well-being in human subjects [20, 21]. One study also measured

the effects of Relora on salivary cortisol, finding benefits in reducing cortisol and increasing dehydroandrostenedione (DHEA) levels in stressed subjects [20]. In this study, we report the effects of using the Relora combination of magnolia bark and phellodendron GW 572016 bark on salivary cortisol and psychological well-being of healthy subjects under moderate levels of perceived psychological stress. The current study

employed a well-validated psychological assessment known as the Profile of Mood States (POMS) to assess mood state. A key objective of the study was to explore how 4 weeks of magnolia/phellodendron supplementation (Relora versus a placebo) affected cortisol, Resveratrol various moods, and overall stress levels under conditions of moderate psychological stress. Methods Dietary supplement Relora® is a proprietary blend of a patented extract of the bark of Magnolia officinalis and an extract of the bark of Phellodendron amurense (US Patent Nos. 6,582,735 and 6,814,987). The product is standardized to “not less than 1.5% honokiol and 0.1% berberine.” Subjects ingested 500 mg/day at breakfast (250 mg) and dinner (250 mg) in white opaque capsules or a look-alike placebo that was identical in size, shape and color. Study design This study was done in accordance with the Helsinki Declaration, as revised in 1983, for clinical research involving humans and all procedures, measurements, and informed consent processes were reviewed and approved by an external third-party review board (Aspire IRB; Santee, CA). Subjects signed informed consent documents after the study details were explained. The study used a randomized placebo-controlled, double-blind design.

We hypothesized that a previously published inactivation protocol

We hypothesized that a https://www.selleckchem.com/products/ro-61-8048.html Previously published inactivation protocol based on the incubation of Y. pestis with Tween and formalin, an agent that denatures proteins, may significantly modify the peptide profiles of isolates and affect their identification SP600125 supplier [33]. As expected, the inactivation of Yersinia by incubation with 80% TFA for 30 minutes as previously

proposed for vegetative cells and spores did not yield interpretable profiles (data not shown) [34]. The protocols for ethanol inactivation tested in this study took 1 hour to inactivate the organisms; however, this step may be omitted if the mass spectrometer is used in a biosafety level 3 laboratory, although this was not the situation in our study. MALDI-TOF-MS identification can be completed in less than 10 minutes, less time than is required for Gram staining analysis this website [13]. The mass spectra of whole cells provide a snapshot of different protein compositions of individual microbial strains and thus constitute strain-specific suites of biomarkers. MALDI-TOF identification, therefore, is a more rapid technique for the identification of Yersinia isolates. Previously, only detection of the F1 capsular antigen using hand-held kits had proven to be an excellent bench-top technique for the rapid identification of Y. pestis [35]. In a comparative analysis, detection of the F1 antigen was highly specific

and sensitive enough to positively identify ten of ten Y. pestis isolates from various countries [35]. The delay in identification varies from 20 minutes for an immunochromatographic test [10] to 2 hours for immunofluorescence microscopy [35]: however, the most accurate immunochromatographic test is not yet commercially available [35]. Given that it is based on the analysis of dozens of phenotypic characteristics into a unique profile, MALDI-TOF identification

is less prone to variability and false negative results than phenotypic identification based on only one phenotypic characteristic such as the Y. pestis F1 capsular antigen. Carnitine palmitoyltransferase II The F1 capsular antigen is plasmid-encoded and might be unstable; thus, it is risky to assume correct identification based on just one phenotypic trait. False negative results have been reported in cultures incubated at temperatures less than 37°C as this antigen is expressed by Y. pestis only between 33-37°C [1]. The same holds true with regard to direct detection of the F1 capsular antigen in specimens that have been refrigerated for more than 30 hours [1]. Therefore, MALDI-TOF identification appears to be the most rapid test for the accurate identification of Y. pestis and other Yersinia species organisms. Conclusion In conclusion, MALDI-TOF can be used as a first-line method for the accurate identification of Yersinia organisms using an updated database that includes profiles of all Yersinia species.

CON =

CON = Control, 10 C = 10% Corn, 5S = 5% Sorghum, 10S = 10% Sorghum, 15S = 15% Sorghum. B. Summary of box plots revealing beta diversity CA4P associated with each treatment. The centroid (50%) and quantile (25 and 75%) values depicting the dispersion of OTUs associated with each dietary treatment. Dots indicate the OTUs associated with each animal. CON = Control, 10 C = 10% Corn, 5S = 5% Sorghum, 10S = 10% Sorghum, 15S = 15% Sorghum. The relationship among treatments is indicated in Whittaker plots (plotted as the log of the relative abundance vs. rank abundance)

with each dot representing a species learn more (Figure 2). The left and top of the graph indicate the presence of the most abundant OTUs with the bottom and right indicating the occurrence of rare OTUs. Each dot represents one species and the high steepness of the graph is indicative of unevenly distributed species. The lengths of the curves also indicate the occurrence of rare OTUs. The curves generally overlap one another in this analysis for all dietary treatments; thus, overall microbial diversity were similar. Figure 2 Rank abundance curves for each treatment. Each point represents the average relative abundance for a species, and species are ranked from most abundant to least abundant. CON = Control, 10 C = 10% Corn, 5S = 5% Sorghum, 10S = 10% Sorghum, 15S

= 15% Sorghum. Influence of DGs on fecal microbiota-phyla Four find more phyla were observed to have a response to dietary treatments (Additional file 1: Figure S1a-d). These are Synergistetes (p = 0.010), WS3 (p = 0.05), Actinobacteria (p = 0.06), and Spirochaetes (p = 0.06). A total of 24 phyla were observed distributed amongst all beef cattle on all diets (Figure 3a and Additional file 2: Figure S2). These are listed in order of average abundance and with their respective ranges (only the top ten abundances and ranges shown): Firmicutes (61%, 19-83%), Bacteroidetes (28%, 11-63%), Spirochaetes (5%, 0.0-23%), Proteobacteria Thalidomide (3.03%, 0.34-17.5%), Verrucomicrobia (1.43%,%,0.0-23.6%), Fibrobacteres (0.51%, 0.0-1.95%), TM7 (0.16%, 0.0-1.32%), Tenericutes (0.15%, 0.0-0.35%), Nitrospirae (0.11%, 0.03-0.22%), Actinobacteria

(0.09%, 0.0-0.24%), and Fusobacteria (0.0863%, 0.0166-0.3813%). Chlamydiae, Cyanobacteria, Planctomycetes, Synergistetes, Lentisphaerae, Acidobacteria, Elusimicrobia, Chlorobi, WS3, Deinococcus-Thermus, Chloroflexi, Gemmatimonadetes, and Deferribacteres were defined as low abundance phyla. Greater than 99.4% of total bacterial abundance was observed in the first 10 phyla, with several remaining phyla represented by 5 or less members. The abundance levels of the top ten phyla averaged based on dietary treatment are presented in Figure 3b. A higher relative abundance of Firmicutes was observed when compared to the relative abundance level of Bacteroidetes for DGs diets that contain 10% or more DG supplement vs. the CON and 5S diets.

2%) or pathogens (44 8%) causing clinical infections About half

2%) or pathogens (44.8%) causing clinical infections. About half of the A. baumannii isolates (35/67, 52.2%) were non-susceptible to carbapenems (34 non-susceptible to both imipenem and meropenem and 1 non-susceptible to meropenem only), which was in consistence with the 53% carbapenem resistance rate of A. baumannii in the 2010 report of Chinese Ministry of Health National Antimicrobial Resistance Investigation Net (MOHNARIN) [5]. Many isolates were non-susceptible to sulbactam (35/67, 52.2%), ceftazidime (39/67,

58.2%), ciprofloxacin (43/67, 64.2%) or cotrimoxazole (47/67, 70.1%) while all isolates were susceptible to polymyxin and rifampicin and only one

isolate was non-susceptible to minocycline. DAPT datasheet bla OXA-23 was the only acquired 3-deazaneplanocin A cell line carbapenemase gene that was detected. Interestingly, it this website was present in 35/35 carbapenem-non-susceptible and 5/32 carbapenem-susceptible isolates. bla OXA-23 has been the most common carbapenemase gene in China, as a previous study reported that 322 out of 342 (94.2%) imipenem-non-susceptible A. baumannii isolates collected from 16 Chinese cities had bla OXA-23[6]. Although bla OXA-23 encodes a carbapenemase, this gene has also been detected in carbapenem-susceptible isolates before [7]. The isolates were assigned to 62 pulsotypes determined by pulsed-field gel electrophoresis (PFGE), suggesting quite diverse clonal relatedness

(Figure 1). A total of 31 sequence types (STs), including 19 new STs, were assigned Chorioepithelioma for the isolates using the multi-locus sequence typing (MLST) with the pubmlst scheme (Table 1 and Figure 2). As the gdhB gene sequence was not obtained from isolate d34 despite repeated attempts using various primer pairs, the ST could not be assigned for this isolate. Of note, two isolates of the same pulsotypes were assigned to different STs, ST118 and ST218. However, ST118 and ST218 were found to be single locus variants to each other. This was in consistence with a previous study [8] reporting that isolates belonging to the same puslotype were not always of the same STs. Figure 1 PFGE patterns of A. baumannii isolates. Dendrogram was generated by BioNumerics software with the unweighted pair-group method using arithmetic averages (UPGMA). Isolate name, ST, CC and the carriage of bla OXA-23 (Y, positive; N, negative) are indicated. The ST numbers shown after slash are assigned using the Pasteur MLST scheme. Table 1 Profiles of A. baumannii clinical isolates ST1 ST profile1: CC2 Isolates no. Hospital3 PFGE types No., isolates carrying No.

Soil potential denitrification rates Denitrification rates were d

Soil potential denitrification rates Denitrification rates were determined as described by Smith and Tiedje [33]. Fifty grams of soil were incubated in hermetically sealed glass (1.8 L) bottles, containing a nutrient solution with NO3 – (100 mg N l-1),

glucose (40 mg l-1) and chloramphenicol (10 mg l-1). The atmosphere in the bottle was replaced by pure N2 and approximately 10% of acetylene was added. Gas samples were removed after 0, 30, 60 and 90 min. Tests were conducted in triplicate. The N2O concentrations were quantified with a gas chromatograph (Shimadzu GC17A). Bacterial community structure and N cycle gene diversity Soil DNA was extracted in triplicate (only three soil samples randomly chosen from the five replicate Selleckchem LEE011 subplots) by using RAD001 mw the FastDNA® Spin Kit for Soil and a FastPrep® equipment (Bio 101, CA, USA), according to the manufacturer’s instructions. To analyze total bacterial community structure and diversity, we used a pair of universal primers for the domain Bacteria, which amplify the gene fragment coding for a fragment of the 16 S rRNA subunit (U968-GC and L1401) [34]. Specific primers for the functional genes amoA (AmoA1F-Clamp

and AmoA-2R-TC) [35] and nirK (F1aCu and R3CuGC) [26] were used to study the ammonia oxidizing and denitrifying bacteria, respectively. A CG-rich clamp was added to the end of one primer for each system [36]. Amplifications were carried out by PCR in 50 μL reactions containing approximately for 10 ng of DNA, Taq buffer 10X, MgCl2 (2.5 mM), dNTPs (0.2 mM), primers (0.2 μM), BSA (bovine serum albumin) (0.1 g l-1), formamide (1% v/v) and Taq DNA polymerase (Fermentas; 2.5 U). The bacterial PCR was run as follows: initial DNA denaturation step at 94°C for 4 min, followed by 35 cycles of 1 min

at 94°C, an annealing step of 1 min at 55°C, and amplification during 2 min at 72°C, with a final extension of 10 min at 72°C. The amoA gene-specific PCR was run with an initial denaturation at 94°C for 3 min, followed by 35 cycles of 30 s at 94°C, 1 min at 57°C, 1 min at 72°C, with a final extension of 10 min at 72°C. The denitrifying gene-specific PCR was run with an initial denaturation at 94°C for 3 min, followed by 5 cycles of 30 s at 94°C, 1 min at 60°C and 1 min at 72°C; 30 cycles of 30 s at 94°C, 1 min at 62°C, and 1 min at 72°C; with a final extension of 10 min at 72°C. The amplified fragments were analyzed via DGGE [37] on a Universal Dcode™ Mutation Detection System (Bio-Rad, Richmond, California, USA). We prepared the polyacrylamide gels (6%) using a selleck inhibitor mixture of 37.5:1 acrylamide/bisacrylamide (w:w) in a TAE 1X buffer (10 mM Tris-acetate, 0.5 mM EDTA pH 8.0), with denaturing gradients of: 45 to 65%, 45 to 65%, and 55 to 70%, for bacterial, ammonia oxidizing and denitrifying gene amplicons, respectively.

Hence, all risk estimates are above 1 Largely, the ranking

Hence, all risk estimates are above 1. Largely, the ranking

according to adjusted PR estimates is in accordance with the ranking based on crude prevalence, with a few exceptions indicative of some confounding. After identifying three occupational subgroups with a relatively high risk of contact sensitisation to the thiurams, namely BMS202 research buy healthcare workers (physicians, nurses and related), food processors (cooks, meat and fish processors) and professional cleaners, the issue of a possible differential time trend was addressed. In view of (i) a distinct general risk gradient related to age (Table 2) and (ii) a weak, but significant association between age and year of patch test in the IVDK population (Uter et al. 2008), simple bivariate

Autophagy activator analyses of crude sensitisation prevalence across time were avoided. Instead, three separate Poisson regression models including age as confounder and the year of patch test as exposure of interest were used to identify a significant decline of sensitisation prevalence in case of healthcare workers (p for trend = 0.0008), but no significant trend for the other two subgroups. The time course of age-standardised sensitisation prevalences is shown in Fig. 1a for healthcare workers and in Fig. 1b for the two other occupational groups. Fig. 1 a Time trend of sensitisation to the thiuram mix in healthcare workers. Sensitisation prevalence is directly age standardised. Straight grey line Vadimezan order represents the fitted regression line to represent a linear subgroup-specific trend. b Time trend of sensitisation to the thiuram mix in food handlers and cleaners, respectively. Sensitisation prevalence is directly age standardised. Straight grey lines represent fitted regression lines to represent a linear subgroup-specific trend Discussion Thiurams and dithiocarbamates, which are also represented by the thiuram mix in patch testing (Andersen

et al. 2006), are important constituents of natural and synthetic rubber products. The vulcanisers (accelerators) may occur both in occupational and non-occupational context (e.g., in privately used “household gloves” (Proksch et al. 2009)). A considerable amount of unreacted accelerator—be it thiurams or other classes—remains PJ34 HCl in the cured rubber product, migrates to the surface and comes into contact with the skin. At least in thin products such as gloves or condoms, it is possible to reduce the residual amount, and, with it, dermal exposure, by washing with hot water to create a product, which is more or less “hypoallergenic” in this respect (Andersen et al. 2006). Although rubber products, in particular, rubber gloves, constitute the major part of dermal exposure, additional rather limited skin contact with thiurams may also be due (i) to pesticides (Saunders and Watkins 2001), (ii) fungicides, also in paints and (iii) to animal repellents (Andersen et al. 2006).

​cme ​msu ​edu/​index ​jsp) The respective partial 16S rRNA gene

​cme.​msu.​edu/​index.​jsp). The respective partial 16S rRNA gene OSI-906 in vitro sequences of OMZ 1117 and 1121 [EMBL: FR667951], and of OMZ 1118 and 1120 [EMBL: FR667952] were identical. OMZ 1119 was identified as L. vaginalis [EMBL: FR667953]. Critical importance of several assay parameters Lactobacilli

are difficult targets for FISH because of their cell wall’s resistance to probe see more penetration. The protocol used successfully in the present study to increase cell permeability evolved from the method of Harmsen et al. [9], which we supplemented with achromopeptidase, previously described to open cell walls of Actinomyces strains [23, 24]. Systematic evaluation of this three-enzyme-pretreatment with 12 reference strains from seven Lactobacillus species showed its indispensability. However, a minority of strains proved to be particularly resistant, as up to 20% of the cells recognizable by phase contrast could not be stained. Of course this raised concerns that such false-negative results could also affect analyses of clinical samples. We cannot completely rule out this possibility, but after comprehensive analysis of many plaque samples we would like to hypothesize that there are differences in cell wall permeability between cultured and native lactobacilli and that false-negative cells are primarily seen after FISH with

cultured lactobacilli. With Erastin purchase cell wall permeability remaining a potential reason for concern, maximum fluorescence intensity from penetrated probes is essential. Fluorescence intensity depends on cellular ribosome content, in situ probe accessibility to the probe target region, and rRNA stability [25]. Several procedures to maximize the performance of FISH probes have been described [15, 16, 26, 27]. They alter the 3-dimensional structure of the target region by using helper probes, optimize probe length and hybridization conditions, improve binding affinity by modifying the probes’ backbone with LNA substitutions, or inhibit enzymatic rRNA degradation. In this study we used all four procedures to improve fluorescence intensity of certain Resveratrol probes. For Lfer466, Lreu986, and Lpla990 one or two helper probes binding directly adjacent

to the target site were added to the hybridization solution and in each case a clear-cut improvement of fluorescence intensity was observed. The same was the case when the LNA-substituted probe L-Ssob440-2 was compared to Ssob440. For five other probes the decision to opt for LNA insertions was taken solely based on own and published experience [25], suggesting limited accessibility of the probes’ target site. All these LNA/DNA-probes displayed intensive fluorescence, but required strict adherence of very stringent hybridization conditions for sufficient specificity. Conclusions In this study we have described the application of 20 new phylogenetic group- or species-specific oligonucleotide probes for the single-cell detection of oral LAB in various clinical or experimental biofilms.

In contrast, a still unsolved biogeographic puzzle involves the d

In contrast, a still unsolved biogeographic puzzle involves the differentiation of the Indochinese and Sundaic biotas without

any clear geological or geographic barrier. The position of this transition in forest-associated birds and its possible history near the Isthmus of Kra were discussed by Hughes et al. (2003) and Woodruff (2003a, b). Woodruff’s (2003a) hypothesis that the peninsula had been cut by barrier-like marine transgressions during the Neogene was not supported by subsequently revised global sea level curves (Miller et al. 2005; Lisiecki and Raymo 2005; Bintanja and van de Wal 2008; Naish and Wilson 2009) but dramatic sea level fluctuations may well account for today’s patterns. Woodruff and Turner (2009) hypothesized that the ~58 significant episodes of sea level rise (of >40 m) (Fig. 2a) and the flooding of the Sunda Shelf during the brief interglacial periods LY3023414 in vivo would have halved the habitat area available and forced the biota back repeatedly into refugia like those they are found in today. They suggested that the repeated 50–70% reduction in habitat area might account for the observed 30% reduction in mammal species diversity in the northern and central peninsula, and the observed clusters of species range limits north

and south of the area. The Indochinese-Sundaic transition in plants lies 500 km south of the Isthmus of Kra on the Kangar-Pattani Line and ecology rather than www.selleckchem.com/products/c646.html history has been used to explain its position (Fig. 1). Phytogeographers have hypothesized that this transition is associated with the occurrence of one or more months without rainfall north of the Kangar-Pattani Line (Whitmore 1998). Although maps of Weck’s selleck products Climatic Adenosine triphosphate Index show an abrupt change here (Brown et al. 2001), maps of the number of months with no significant rainfall suggest a more complex picture (see Wells 1999; Woodruff 2003a, b). The climatological underpinning of this ecological hypothesis needs to be verified, and van Steenis’ unpublished and

lost distribution maps of 1,200 plant genera should now be recreated. If, as it seems likely, some Malesian species occur at least 500 km further north of the Kangar-Pattani Line, where seasonal evergreen rainforest transitions to mixed moist deciduous forest near the Isthmus of Kra, then the plant transition will need reinterpretation (Woodruff 2003a, b). Today’s geography is highly unusual and recognizable for perhaps only 42 kyr or 2% of the last 2 Myr. It follows that today’s plant and animal species distribution patterns may also be unusual and <10 kyr old (Woodruff 2003a). For most of the last 2 Myr there was almost continuous dry land access between the continent and the islands of Sumatra, Java and Borneo. Land emerged whenever sea levels fell below −30 m; land bridges between the continent and today’s islands were the norm rather than the exception (Fig. 3b).

J Bacteriol 1986, 165:864–870 PubMed 8 Rodrigues E, Rodrigues L,

J Bacteriol 1986, 165:864–870.PubMed 8. Rodrigues E, Rodrigues L, de Oliveira A, Baldani V, Teixeira KRS, Urquiaga S, Reis V: Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice ( Oryza sativa L.). Plant Soil 2008, 302:249–261.CrossRef 9. Forchhammer K: PII signal transducers: novel functional and structural insights.

Trends Microbiol 2008, 16:65–72.PubMed 10. Leigh J, Dodsworth J: Nitrogen regulation in bacteria learn more and archaea. Annu Rev Microbiol 2007, 61:349–377.PubMedCrossRef 11. Sant’Anna FH, Trentini DB, de Souto Weber S, Cecagno R, da Silva SC, Schrank IS: The PII superfamily revised: a novel group and evolutionary insights. J Mol Evol 2009, 68:322–336.PubMedCrossRef 12. Arcondéguy T, Jack R, Merrick M: P(II) signal transduction proteins, PU-H71 price pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001, 65:80–105.PubMedCrossRef 13. Conroy M, Durand A, Lupo D, Li XD, Bullough P, Winkler F, Merrick M: The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 2007, 104:1213–1218.PubMedCrossRef

14. de Zamaroczy M: Structural homologues P(II) and P(Z) of Azospirillum brasilense provide intracellular signalling for selective regulation AZD9291 concentration of various nitrogen-dependent functions. Mol Microbiol 1998, 29:449–463.PubMedCrossRef 15. Huergo L, Merrick M, Monteiro R, Chubatsu L, Steffens M, Pedrosa FO, Souza E: In vitro interactions between the PII proteins and the nitrogenase regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase-activating glycohydrolase (DraG) in Azospirillum brasilense . J Biol Chem 2009, 284:6674–6682.PubMedCrossRef 16. Araújo

L, Monteiro R, Souza E, Steffens B, Rigo L, Pedrosa FO, Chubatsu L: GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli . Res Microbiol 2004, 155:491–495.PubMedCrossRef 17. Chen S, Liu L, Zhou X, Elmerich C, Li JL: Functional analysis of the GAF domain of NifA in Carnitine dehydrogenase Azospirillum brasilense : effects of Tyr–>Phe mutations on NifA and its interaction with GlnB. Mol Genet Genomics 2005, 273:415–422.PubMedCrossRef 18. Fu HA, Hartmann A, Lowery RG, Fitzmaurice WP, Roberts GP, Burris RH: Posttranslational regulatory system for nitrogenase activity in Azospirillum spp. J Bacteriol 1989, 171:4679–4685.PubMed 19. Davison J: Genetic tools for pseudomonads, rhizobia, and other gram-negative bacteria. BioTechniques 2002, 32:386–388.PubMed 20. Schweizer H: Bacterial genetics: past achievements, present state of the field, and future challenges. BioTechniques 2008, 44:633–641.PubMedCrossRef 21. Holguin G, Patten CL, Glick BR: Genetics and molecular biology of Azospirillum . Biol Fertil Soils 1999, 29:10–23.CrossRef 22. Aune T, Aachmann F: Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 2010, 85:1301–1313.