In addition, human Snail2 (Slug) and mouse Snail1 amino

In addition, human Snail2 (Slug) and mouse Snail1 amino Selleckchem Enzalutamide acid sequences are shown for comparison to the human Snail1 sequence. Human Slug is 48% identical to human Snail1, and mouse Snail1 is 88% identical to human Snail1. The sequence alignments were run through BLAST [9]. Epithelial-to-mesenchymal transition (EMT) is the process by which epithelial cells lose their apical polarity and adopt a mesenchymal phenotype, thereby, increasing migratory properties, invasiveness and apoptotic

resistance. The expression of mesenchymal markers, like vimentin and fibronectin, replaces that of the usual epithelial markers, including E-cadherin, cytokeratins and Mucin-1 [10]. EMT is fundamental to both normal developmental processes and metastatic cancer. The induction of epithelial-to-mesenchymal transition (EMT) is Snail1’s most studied function, as this process is crucial for the formation of the mesoderm and the neural crest [1]. Snail1 knockout in mice is lethal because gastrulation does not occur [11]. The primary mechanism of Snail1-induced EMT is the repression of E-cadherin, which causes reduced cell adhesion and promotes migratory capacity [12]. The further elucidation of Snail1’s role in EMT selleck products provides a critical insight into the development of metastatic cancer. In addition, Snail1 has been recently implicated in the regulation

of drug/immune resistance and the cancer stem cell (CSC) phenotype [13–16]. Regulation of Snail1 expression Transcriptional regulation The Notch intracellular domain, LOXL2, NF-κB, HIF-1α, IKKα, SMAD, HMGA2, Egr-1, PARP-1, STAT3, MTA3, and Gli1 all interact directly with the Snail1 promoter to regulate Snail1 at isometheptene the transcriptional level [17–29]. Hypoxic stress, caused by insufficient oxygen, prompts a transcriptional response mediated by hypoxia-inducible factors (HIFs) [17]. Notch

increases HIF-1α recruitment to the LOX promoter, and LOXL2 oxidizes K98 and/or K127 on the Snail1 promoter, leading to a conformational change in shape [18]. Under hypoxic conditions, HIF-1α binds to HRE2, contained within -750 to -643 bp of the Snail1 promoter, and increases Snail1 transcription. Knockdown of HIF-1α results in the repression of both Snail1 and EMT [19]. NF-κB also binds to the Snail1 promoter, between -194 and -78 bp, and increases its transcription [20]. SMAD2 and IKKα bind concurrently to the Snail1 promoter between -631 and -506 bp, resulting in Snail1’s upregulation [21]. HMGA2 cooperates in this complex as well, as the binding of HMGA2 to the Snail1 promoter increases SMAD binding [22]. In addition, ILK promotes PARP-1 binding, and STAT3 binds as a final result of an IL-6/JAK/STAT pathway [23,24]. In mice, a pathway beginning with HB-EGF and progressing through the MEK/ERK pathway has also induced STAT3 binding to the Snail1 promoter [25]. Gli1 and Snail1 interact through a positive feedback loop: Shh and Wnt crosstalk results in the upregulation of both [26].

Comments are closed.