In the pivotal study, glycerol phenylbutyrate met its predefined endpoint of noninferiority to NaPBA with respect to ammonia control, assessed as NH3-AUC0–24hr. Consistent with the results of each of the prior two Phase 2 studies, NH3-AUC0–24hr was directionally lower during treatment with glycerol phenylbutyrate and the 24-hour profiles for both blood ammonia concentration and U-PAGN excretion MK-1775 cost were consistent with slow release behavior of glycerol phenylbutyrate.6, 8 Similarities in study design (e.g., study population, efficacy measures, analytical approach) and dosing (PBA mole-equivalent doses of NaPBA and
HPN-100) among protocols UP 1204-003, HPN-100-005, and HPN-100-006 allowed for pooling of data from these studies. In the pooled analysis, NH3-AUC0–24hr was significantly lower during treatment with glycerol phenylbutyrate, a difference that was entirely attributable to better control during late afternoon and overnight hours, when UCD patients might be expected to be particularly vulnerable. These findings were consistent among all predefined subgroups. Furthermore, mean blood ammonia levels remained within the normal range for up to 12 months in both adult and pediatric patients. Glutamine
also tended to be lower on glycerol phenylbutyrate as compared with NaPBA by post-hoc analyses in each study individually and was significantly lower in the pooled analysis. Glutamine not only represents a precursor for PD-1 inhibitor PAGN formation, but it correlates with ammonia control, selleckchem it is often used as a dosing biomarker, and its intracellular accumulation in glial cells is believed to be one of the factors responsible for cerebral edema, a potentially lethal complication in UCD.12, 13, 14 These encouraging biochemical findings in short-term studies were corroborated by the findings in the long-term follow-up studies, which included ∼40% fewer hyperammonemic crises and improvement in executive functioning among pediatric patients, for whom mean fasting ammonia averaged approximately half the ULN. These changes in executive function are of particular interest, as
problems with behavioral regulation, planning, monitoring progress, purposeful problem solving, etc., are known to compromise the day-to-day function of UCD patients including those with normal IQ.3, 4 While necessarily uncontrolled, the absence of change in other neuropsychological test scores during the 12 months of treatment, particularly the CBCL, which is a parent report measure of the child’s functioning in their day-to-day environment, suggests that these improvements in executive function do not represent a placebo response. Moreover, the improvement in executive function while taking GPB suggests that UCD patients exhibit neuropsychological abnormalities that may be reversible with effective treatment.