Published by Elsevier Ltd on behalf of IBRO.”
“Evidence from developmental MDV3100 datasheet and regeneration studies of the cochlea and other tissues gives reason to hypothesize a role for nonneural cells in the growth and regeneration of cochlear spiral ganglion nerve fibers. We examined the spontaneous associations of regrowing neurites and nonneural cells in mixed cultures of dissociated newborn mouse spiral ganglia. After 7 days in vitro, nonneural cells formed a confluent layer in the culture well. Regrowing neurites grew atop this layer, forming non-uniform patterns that were similar to those formed by endogenously expressed laminin-1, entactin and integrin beta 4, but not fibronectin
or tenascin. In cultures grown for 42 h and
maintained in three different growth media, all regrowing neurites were preferentially associated with spindle-shaped nonneural cells. The spindle-shaped cells incorporated bromodeoxyuridine in culture and were immunoreactive for the proteins S100, laminin-1, laminin-2, SRY-related high-mobility-group box 10 transcription factor (Sox10), neurotrophin receptor (P75) and connexin29 but negative for fibronectin and glial fibrillary acidic protein. These cells existed in the culture within a much larger, general population of fibronectin positive cells. Immunolabeling of fixed cochleas from neonatal mice localized Sox10, P75 and connexin29, to peripheral nerve bundles. The observed expressions of protein markers and the bipolar, spindle shape of the neurite-associated Protein Tyrosine Kinase inhibitor ARS-1620 datasheet cells indicate that they are derived in vitro from the original Schwann or satellite cells in the ganglion or spiral lamina. The spontaneous and preferential association of neurites
in culture with mitotic Schwann cells highlights the potential contribution neurite-Schwann cell interactions may have in promoting the growth and regrowth of damaged spiral ganglion neurons in the cochlea. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.”
“As part of our systematic exploration of chemical determinants for the olfactory potency of vapors towards humans, we measured concentration-detection functions for the odor of the homologous n-alkylbenzenes toluene, ethylbenzene, butylbenzene, hexylbenzene, and octylbenzene. A vapor delivery device based on dynamic olfactometry and calibrated by gas chromatography, served to test groups of 16 to 17 participants. Subjects were young adults from both genders, normosmics, and nonsmokers. Odor functions were tightly modeled by a sigmoid (logistic) function, both at the group and the individual level. Odor detection thresholds (ODTs), defined as the concentration producing a detectability halfway between chance and perfect detection, decreased with alkyl chain length from toluene (79 ppb) to butylbenzene (2.5 ppb), and then increased form butyl to octylbenzene (89 ppb).