This work was funded by the Università Cattolica

del Sacr

This work was funded by the Università Cattolica

del Sacro Cuore, progetti di ricerca d’interesse d’Ateneo – D.3.2 – Anno 2006 to R.C., Lattobacilli contro l’influenza aviare. “
“Persisters are suggested to be the products of a phenotypic variability that are quasi-dormant forms of regular bacterial cells highly tolerant to antibiotics. Our previous investigations revealed that a decrease in antibiotic tolerance of Escherichia coli cells could be reached through the inhibition of key enzymes of polyamine synthesis (putrescine, spermidine). We therefore assumed that polyamines could be involved in persister cell formation. Data obtained in our experiments with the polyamine-deficient E. coli strain demonstrate that the formation of persisters tolerant to netilmicin is highly BMN 673 nmr upregulated by putrescine in a concentration-dependent manner when cells enter the stationary phase. This period is also accompanied by dissociation selleck chemical of initially homogenous subpopulation of persister cells to some fractions differing in their levels of tolerance to netilmicin. With three independent experimental approaches, we demonstrate that putrescine-dependent upregulation of persister cell formation is mediated by stimulation of rpoS expression. Complementary

activity of putrescine and RpoS results in ~ 1000-fold positive effect on persister cell formation. “
“The ataxic sticky (sti/sti) mouse is a spontaneous autosomal recessive mutant resulting from a disruption in the editing domain of the alanyl-tRNA synthetase (Aars) gene. The sticky phenotype is characterized by a small Phosphatidylinositol diacylglycerol-lyase body size, a characteristic unkempt coat and neurological manifestations including marked tremor and ataxia starting at 6 weeks of age. The present study was undertaken to examine the spatiotemporal features of Purkinje cell degeneration in the sticky mouse. Purkinje cell loss was found to be both progressive and patterned, with vermal lobules VI, IX and X, crus 1 of the hemisphere, and the flocculus

and paraflocculus being differentially resistant to degeneration. The pattern of Purkinje cell degeneration in sticky is not random – in general, the sphingosine kinase 1a-immunonegative Purkinje cell subset is preferentially susceptible to early cell death. In addition, zebrin II/aldolase C expression in the sticky cerebellum is profoundly downregulated, whereas the heat-shock protein 25 is both ectopically expressed in some scattered Purkinje cells and downregulated in other Purkinje cells in which it is normally expressed constitutively. Compared with many mouse mutants with patterned Purkinje cell death, in which successive stripes of cell loss are very clear, Purkinje cell loss in sticky shows a less clear-cut pattern between different Purkinje cell subtypes, with the result that preferential survival is less dramatic. This may represent a secondary consequence of the downregulation of zebrin II expression.

Comments are closed.